Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(6): e28094, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38532994

RESUMO

Objective: Osteoarthritis (OA), the most prevalent form of arthritis, impacts approximately 10% of men and 18% of women aged above 60 years. Currently, a complete cure for OA remains elusive, making clinical management challenging. The traditional Chinese herb Notopterygium incisum, integral to the Juanbi pill for rheumatism, shows promise in safeguarding chondrocytes through its strong anti-inflammatory effects. Methods: To explore the protective effect of notopterol and miRNA (has-miR-4248) against inflammation, we simulated an inflammatory environment in chondrocytes cell lines C20A4 and C28/12, focusing on inflammasome formation and pyroptosis. Results: Our finding indicates notopterol significantly reduced interleukin (IL)-18 and tumor necrosis factor (TNF)-alpha levels in inflamed cells, curtailed reactive oxygen species (ROS) production post-inflammation, and inhibited the JAK2/STAT3 signaling pathway, thus offering chondrocytes protection from inflammation. Importantly, notopterol also hindered inflammasome assembly and pyroptosis by blocking the NF-κB/NLRP3 pathway through hsa-miR-4282 modulation. In vivo experiments showed that notopterol treatment markedly decreased Osteoarthritis Research Society International (OARSI) scores in OA mice and boosted hsa-miR-4282 expression compared to control groups. Conclusions: This study underscores notopterol's potential as a therapeutic agent in OA treatment, highlighting its capacity to shield cartilage from inflammation-induced damage, particularly by preventing pyroptosis.

2.
Aging (Albany NY) ; 16(3): 2679-2701, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38305803

RESUMO

Renal cell carcinoma (RCC) is the predominant form of malignant kidney cancer. Sunitinib, a primary treatment for advanced, inoperable, recurrent, or metastatic RCC, has shown effectiveness in some patients but is increasingly limited by drug resistance. Recently identified cuproptosis, a copper-ion-dependent form of programmed cell death, holds promise in combating cancer, particularly drug-resistant types. However, its effectiveness in treating drug resistant RCC remains to be determined. Exploring cuproptosis's regulatory mechanisms could enhance RCC treatment strategies. Our analysis of data from the GEO and TCGA databases showed that the cuproptosis-related gene DBT is markedly under expressed in RCC tissues, correlating with worse prognosis and disease progression. In our study, we investigated copper CRGs in ccRCC, noting substantial expression differences, particularly in advanced-stage tumors. We established a connection between CRG expression levels and patient survival, positioning CRGs as potential therapeutic targets for ccRCC. In drug resistant RCC cases, we found distinct expression patterns for DBT and GLS CRGs, linked to treatment resistance. Our experiments demonstrated that increasing DBT expression significantly reduces RCC cell growth and spread, underscoring its potential as a therapeutic target. This research sheds new light on the role of CRGs in ccRCC and their impact on drug resistance.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Ácido Tióctico/análogos & derivados , Humanos , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/genética , Sunitinibe/farmacologia , Sunitinibe/uso terapêutico , Cobre , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/genética , Apoptose
3.
Life Sci ; 329: 121945, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37454756

RESUMO

BACKGROUND: Brain metastasis affects 20-40 % of lung cancer patients, severely diminishing their quality of life. This research focuses on miR-21, overexpressed in these patients and inversely associated with DGKB in the ERK/STAT3 pathway, suggesting a dysregulated pathway with therapeutic potential. AIMS: The objective was to investigate miR-21's role in lung cancer patients with brain metastases and whether targeting this pathway could improve treatment outcomes. We also examined the miR-21 content in tumor spheres-derived extracellular vesicles (EVs) and their influence on ERK/STAT3 signaling and metastasis. MATERIALS AND METHODS: Tumor spheres were created from metastatic lung cancer cells. We studied miR-21 levels in these spheres, their impact on macrophage polarization, and the transition of nonmetastatic lung cancer cells. Furthermore, we analyzed miR-21 content in EVs derived from these spheres and their effect on ERK/STAT3 signaling and metastasis potential. KEY FINDINGS: We found tumor spheres had high miR-21 levels, promoting macrophage polarization and, epithelial-mesenchymal transition. These spheres-derived EVs, enriched with miR-21, accelerated ERK/STAT3 signaling and metastasis. Silencing miR-21 and inhibiting ERK signaling with ulixertinib notably mitigated these effects. Moreover, ulixertinib reduced brain metastasis incidence and increased survival in a mouse model and led to reduced tumor sphere generation and miR-21 levels in EVs. SIGNIFICANCE: Our study highlights the exacerbation of lung-to-brain metastasis via miR-21-rich EV secretion. This underlines the therapeutic promise of targeting the miR-21/ERK/STAT3 pathway with ulixertinib for managing brain metastasis from lung cancer.


Assuntos
Neoplasias Encefálicas , Neoplasias Pulmonares , MicroRNAs , Animais , Camundongos , Neoplasias Encefálicas/genética , Pulmão/metabolismo , Neoplasias Pulmonares/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Qualidade de Vida , Microambiente Tumoral
4.
Biomedicines ; 11(7)2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37509721

RESUMO

BACKGROUND: Hepatocellular carcinoma is the sixth most diagnosed malignancy and the fourth most common cause of cancer-related mortality globally. Despite progress in the treatment of liver cancer, nonsurgical treatments remain unsatisfactory, and only 15% of early-stage cases are surgically operable. Radiotherapy (RT) is a non-surgical treatment option for liver cancer when other traditional treatment methods are ineffective. However, RT has certain limitations, including eliciting poor therapeutic effects in patients with advanced and recurrent tumors. Tumor-associated macrophages (TAMs) are major inflammatory cells in the tumor microenvironment that are key to tumor development, angiogenesis, invasion, and metastasis, and they play an essential role in RT responses. METHODS: We used big data analysis to determine the potential of targeting CXCL6/CXCR2. We enrolled 50 patients with liver cancer who received RT at our hospital. Tumor tissue samples were examined for any relationship between CXCL6/CXCR2 activity and patient prognosis. Using a cell coculture system (Transwell), we cocultured Huh7 liver cancer cells and THP-1 monocytes with and without CXCL6/CXCR2 small interfering RNA for 72 h. RESULTS: The overexpression of CXCL6/CXCR2 was highly correlated with mortality. Our tissue study indicated a positive correlation between CXCL6/CXCR2 and M2-TAMs subsets. The coculture study demonstrated that THP-1 monocytes can secrete CXCL6, which acts on the CXCR2 receptor on the surface of Huh7 cells and activates IFN-g/p38 MAPK/NF-κB signals to promote the epithelial-mesenchymal transition and radio-resistance. CONCLUSIONS: Modulating the TAM/CXCL6/CXCR2 tumor immune signaling axis may be a new treatment strategy for the effective eradication of radiotherapy-resistant hepatocellular carcinoma cells.

5.
Int J Mol Sci ; 23(13)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35806291

RESUMO

BACKGROUND: Lung cancer remains a leading cause of cancer-related death, with an annual global mortality rate of 18.4%. Despite advances in diagnostic and therapeutic technologies, non-small cell lung carcinoma (NSCLC) continues to be characterized by a poor prognosis. This may be associated with the enrichment of cancer stem cells (CSCs) and the development of chemoresistance-a double-edged challenge that continues to impede the improvement of long-term outcomes. Metabolic reprogramming is a new hallmark of cancer. Sterol regulatory element-binding proteins (SREBPs) play crucial regulatory roles in the synthesis and uptake of cholesterol, fatty acids, and phospholipids. Recent evidence has demonstrated that SREBP-1 is upregulated in several cancer types. However, its role in lung cancer remains unclear. OBJECTIVE: This study investigated the role of SREBP-1 in NSCLC biology, progression, and therapeutic response and explored the therapeutic exploitability of SREBP-1 and SREBP-1-dependent oncometabolic signaling and miRNA epigenetic regulation. METHODS: We analyzed SREBP-1 levels and biological functions in clinical samples and the human NSCLC cell lines H441 and A549 through shRNA-based knock down of SREBP function, cisplatin-resistant clone generation, immunohistochemical staining of clinical samples, and cell viability, sphere-formation, Western blot, and quantitative PCR assays. We conducted in-silico analysis of miRNA expression in NSCLC samples by using the Gene Expression Omnibus (GSE102286) database. RESULTS: We demonstrated that SREBP-1 and SCAP are highly expressed in NSCLC and are positively correlated with the aggressive phenotypes of NSCLC cells. In addition, downregulation of the expression of tumor-suppressing hsa-miR-497-5p, which predictively targets SREBP-1, was observed. We also demonstrated that SREBP-1/SCAP/FASN lipogenic signaling plays a key role in CSCs-like and chemoresistant NSCLC phenotypes, especially because the fatostatin or shRNA targeting of SREBP-1 significantly suppressed the viability, cisplatin resistance, and cancer stemness of NSCLC cells and because treatment induced the expression of hsa-miR-497. CONCLUSION: Targeting the SREBP-1/hsa-miR-497 signaling axis is a potentially effective anticancer therapeutic strategy for NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Proliferação de Células , Cisplatino/uso terapêutico , Epigênese Genética , Ácido Graxo Sintase Tipo I/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , MicroRNAs/metabolismo , Fenótipo , RNA Interferente Pequeno/farmacologia , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo
6.
Int J Mol Sci ; 23(13)2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35806043

RESUMO

Osteoarthritis (OA) is most prevalent in older individuals and exerts a heavy social and economic burden. However, an effective and noninvasive approach to OA treatment is currently not available. Chondrocyte senescence has recently been proposed as a key pathogenic mechanism in the etiology of OA. Furthermore, senescent chondrocytes (SnCCs) can release various proinflammatory cytokines, proteolytic enzymes, and other substances known as the senescence-associated secretory phenotype (SASP), allowing them to connect with surrounding cells and induce senesce. Studies have shown that the pharmacological elimination of SnCCs slows the progression of OA and promotes regeneration. Growth differentiation factor 15 (GDF15), a member of the tumor growth factor (TGF) superfamily, has recently been identified as a possible aging biomarker and has been linked to a variety of clinical conditions, including coronary artery disease, diabetes, and multiple cancer types. Thus, we obtained data from a publicly available single-cell sequencing RNA database and observed that GDF15, a critical protein in cellular senescence, is highly expressed in early OA. In addition, GDF15 is implicated in the senescence and modulation of MAPK14 in OA. Tissue and synovial fluid samples obtained from OA patients showed overexpression of GDF15. Next, we treated C20A4 cell lines with interleukin (IL)-1ß with or without shGDF15 then removed the conditioned medium, and cultured C20A4 and HUVEC cell lines with the aforementioned media. We observed that C20A4 cells treated with IL-1ß exhibited increased GDF15 secretion and that chondrocytes cultured with media derived from IL-1ß-treated C20A4 exhibited senescence. HUVEC cell migration and tube formation were enhanced after culturing with IL-1ß-treated chondrocyte media; however, decreased HUVEC cell migration and tube formation were noted in HUVEC cells cultured with GDF15-loss media. We tested the potential of inhibiting GDF15 by using a GDF15 neutralizing antibody, GDF15-nAb. GDF15-nAb exerted a similar effect, resulting in the molecular silencing of GDF15 in vivo and in vitro. Our results reveal that GDF15 is a driver of SnCCs and can contribute to OA progression by inducing angiogenesis.


Assuntos
Proteína Quinase 14 Ativada por Mitógeno , Osteoartrite , Idoso , Senescência Celular/genética , Condrócitos/metabolismo , Fator 15 de Diferenciação de Crescimento/metabolismo , Humanos , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Osteoartrite/metabolismo , Senoterapia
7.
Int J Mol Sci ; 23(3)2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35163585

RESUMO

BACKGROUND: The treatment of non-small-cell lung cancer (NSCLC) involves platinum-based chemotherapy. It is typically accompanied by chemoresistance resulting from antioxidant properties conferred by cancer stem cells (CSCs). Human epidermal growth factor receptor 2 (HER2) enhances CSCs and antioxidant properties in cancers, including NSCLC. METHODS: Here, we elucidated the role of histamine N-methyltransferase (HNMT), a histamine metabolism enzyme significantly upregulated in NSCLC and coexpressed with HER2. HNMT expression in lung cancer tissues was determined using quantitative reverse transcription PCR (RT-qPCR). A publicly available dataset was used to determine HNMT's potential as an NSCLC target molecule. Immunohistochemistry and coimmunoprecipitation were used to determine HNMT-HER2 correlations and interactions, respectively. HNMT shRNA and overexpression plasmids were used to explore HNMT functions in vitro and in vivo. We also examined miRNAs that may target HNMT and investigated HNMT/HER2's role on NSCLC cells' antioxidant properties. Finally, how HNMT loss affects NSCLC cells' sensitivity to cisplatin was investigated. RESULTS: HNMT was significantly upregulated in human NSCLC tissues, conferred a worse prognosis, and was coexpressed with HER2. HNMT depletion and overexpression respectively decreased and increased cell proliferation, colony formation, tumorsphere formation, and CSCs marker expression. Coimmunoprecipitation analysis indicated that HNMT directly interacts with HER2. TARGETSCAN analysis revealed that HNMT is a miR-223 and miR-3065-5p target. TBHp treatment increased HER2 expression, whereas shHNMT disrupted the Nuclear factor erythroid 2-related factor 2 (Nrf2)/ hemeoxygenase-1 (HO-1)/HER2 axis and increased reactive oxygen species accumulation in NSCLC cells. Finally, shHNMT sensitized H441 cells to cisplatin treatment in vitro and in vivo. CONCLUSIONS: Therefore, HNMT upregulation in NSCLC cells may upregulate HER2 expression, increasing tumorigenicity and chemoresistance through CSCs maintenance and antioxidant properties. This newly discovered regulatory axis may aid in retarding NSCLC progression and chemoresistance.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/enzimologia , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Histamina N-Metiltransferase/biossíntese , Neoplasias Pulmonares/enzimologia , Células-Tronco Neoplásicas/enzimologia , Estresse Oxidativo , Receptor ErbB-2/metabolismo , Regulação para Cima , Células A549 , Animais , Carcinoma Pulmonar de Células não Pequenas/genética , Feminino , Histamina N-Metiltransferase/genética , Humanos , Neoplasias Pulmonares/genética , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Receptor ErbB-2/genética
8.
Int J Mol Sci ; 22(21)2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34768921

RESUMO

Background: Oral squamous cell carcinoma (OSCC) has a high prevalence and predicted global mortality rate of 67.1%, necessitating better therapeutic strategies. Moreover, the recurrence and resistance of OSCC after chemo/radioresistance remains a major bottleneck for its effective treatment. Molecular targeting is one of the new therapeutic approaches to target cancer. Among a plethora of targetable signaling molecules, PDK1 is currently rising as a potential target for cancer therapy. Its aberrant expression in many malignancies is observed associated with glycolytic re-programming and chemo/radioresistance. Methods: Furthermore, to better understand the role of PDK1 in OSCC, we analyzed tissue samples from 62 patients with OSCC for PDK1 expression. Combining in silico and in vitro analysis approaches, we determined the important association between PDK1/CD47/LDHA expression in OSCC. Next, we analyzed the effect of PDK1 expression and its connection with OSCC orosphere generation and maintenance, as well as the effect of the combination of the PDK1 inhibitor BX795, cisplatin and radiotherapy in targeting it. Results: Immunohistochemical analysis revealed that higher PDK1 expression is associated with a poor prognosis in OSCC. The immunoprecipitation assay indicated PDK1/CD47 binding. PDK1 ligation significantly impaired OSCC orosphere formation and downregulated Sox2, Oct4, and CD133 expression. The combination of BX795 and cisplatin markedly reduced in OSCC cell's epithelial-mesenchymal transition, implying its synergistic effect. p-PDK1, CD47, Akt, PFKP, PDK3 and LDHA protein expression were significantly reduced, with the strongest inhibition in the combination group. Chemo/radiotherapy together with abrogation of PDK1 inhibits the oncogenic (Akt/CD47) and glycolytic (LDHA/PFKP/PDK3) signaling and, enhanced or sensitizes OSCC to the anticancer drug effect through inducing apoptosis and DNA damage together with metabolic reprogramming. Conclusions: Therefore, the results from our current study may serve as a basis for developing new therapeutic strategies against chemo/radioresistant OSCC.


Assuntos
Cisplatino/farmacologia , Glicólise/efeitos dos fármacos , Neoplasias Bucais/tratamento farmacológico , Pirimidinas/farmacologia , Piruvato Desidrogenase Quinase de Transferência de Acetil/antagonistas & inibidores , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Tiofenos/farmacologia , Adulto , Idoso , Apoptose/efeitos dos fármacos , Antígeno CD47/metabolismo , Linhagem Celular Tumoral , Dano ao DNA/efeitos dos fármacos , Progressão da Doença , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas Proto-Oncogênicas c-akt/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil/genética , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética , Tolerância a Radiação/fisiologia , Transdução de Sinais/efeitos dos fármacos
9.
Int J Mol Sci ; 22(19)2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34638586

RESUMO

BACKGROUND: Glioblastoma (GBM) is the most common primary malignant brain tumor in adults. It is highly resistant to chemotherapy, and tumor recurrence is common. Neuronal precursor cell-expressed developmentally downregulated 4-1 (NEDD4-1) is an E3 ligase that controls embryonic development and animal growth. NEDD4-1 regulates the tumor suppressor phosphatase and tensin homolog (PTEN), one of the major regulators of the PI3K/AKT/mTOR signaling axis, as well as the response to oxidative stress. METHODS: The expression levels of NEDD4-1 in GBM tissues and different cell lines were determined by quantitative real-time polymerase chain reaction and immunohistochemistry. In vitro and in vivo assays were performed to explore the biological effects of NEDD4-1 on GBM cells. Temozolomide (TMZ)-resistant U87MG and U251 cell lines were specifically established to determine NEDD4-1 upregulation and its effects on the tumorigenicity of GBM cells. Subsequently, miRNA expression in TMZ-resistant cell lines was investigated to determine the dysregulated miRNA underlying the overexpression of NEDD4-1. Indole-3-carbinol (I3C) was used to inhibit NEDD4-1 activity, and its effect on chemoresistance to TMZ was verified. RESULTS: NEDD4-1 was significantly overexpressed in the GBM and TMZ-resistant cells and clinical samples. NEDD4-1 was demonstrated to be a key oncoprotein associated with TMZ resistance, inducing oncogenicity and tumorigenesis of TMZ-resistant GBM cells compared with TMZ-responsive cells. Mechanistically, TMZ-resistant cells exhibited dysregulated expression of miR-3129-5p and miR-199b-3p, resulting in the induced NEDD4-1 mRNA-expression level. The upregulation of NEDD4-1 attenuated PTEN expression and promoted the AKT/NRF2/HO-1 oxidative stress signaling axis, which in turn conferred amplified defense against reactive oxygen species (ROS) and eventually higher resistance against TMZ treatment. The combination treatment of I3C, a known inhibitor of NEDD4-1, with TMZ resulted in a synergistic effect and re-sensitized TMZ-resistant tumor cells both in vitro and in vivo. CONCLUSIONS: These findings demonstrate the critical role of NEDD4-1 in regulating the redox imbalance in TMZ-resistant GBM cells via the degradation of PTEN and the upregulation of the AKT/NRF2/HO-1 signaling pathway. Targeting this regulatory axis may help eliminate TMZ-resistant glioblastoma.


Assuntos
Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Heme Oxigenase-1/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Ubiquitina-Proteína Ligases Nedd4/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Idoso , Animais , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/tratamento farmacológico , Humanos , Masculino , Camundongos Endogâmicos NOD , Camundongos SCID , MicroRNAs/metabolismo , Oxirredução/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Temozolomida/uso terapêutico , Regulação para Cima/efeitos dos fármacos
10.
Int J Mol Sci ; 22(20)2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34681754

RESUMO

Osteoarthritis (OA) is a common articular disease manifested by the destruction of cartilage and compromised chondrogenesis in the aging population, with chronic inflammation of synovium, which drives OA progression. Importantly, the activated synovial fibroblast (AF) within the synovium facilitates OA through modulating key molecules, including regulatory microRNAs (miR's). To understand OA associated pathways, in vitro co-culture system, and in vivo papain-induced OA model were applied for this study. The expression of key inflammatory markers both in tissue and blood plasma were examined by qRT-PCR, western blot, immunohistochemistry, enzyme-linked immunosorbent assay (ELISA) and immunofluorescence assays. Herein, our result demonstrated, AF-activated human chondrocytes (AC) exhibit elevated NFκB, TNF-α, IL-6, and miR-21 expression as compared to healthy chondrocytes (HC). Importantly, AC induced the apoptosis of HC and inhibited the expression of chondrogenesis inducers, SOX5, TGF-ß1, and GDF-5. NFκB is a key inflammatory transcription factor elevated in OA. Therefore, SC75741 (an NFκB inhibitor) therapeutic effect was explored. SC75741 inhibits inflammatory profile, protects AC-educated HC from apoptosis, and inhibits miR-21 expression, which results in the induced expression of GDF-5, SOX5, TGF-ß1, BMPR2, and COL4A1. Moreover, ectopic miR-21 expression in fibroblast-like activated chondrocytes promoted osteoblast-mediated differentiation of osteoclasts in RW264.7 cells. Interestingly, in vivo study demonstrated SC75741 protective role, in controlling the destruction of the articular joint, through NFκB, TNF-α, IL-6, and miR-21 inhibition, and inducing GDF-5, SOX5, TGF-ß1, BMPR2, and COL4A1 expression. Our study demonstrated the role of NFκB/miR-21 axis in OA progression, and SC75741's therapeutic potential as a small-molecule inhibitor of miR-21/NFκB-driven OA progression.


Assuntos
Benzimidazóis/farmacologia , Condrócitos/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , NF-kappa B/antagonistas & inibidores , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Piperidinas/farmacologia , Pirimidinas/farmacologia , Tiazóis/farmacologia , Animais , Benzimidazóis/química , Diferenciação Celular/genética , Condrócitos/metabolismo , Condrócitos/patologia , Colágeno Tipo IV/genética , Colágeno Tipo IV/metabolismo , Modelos Animais de Doenças , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Regulação da Expressão Gênica , Fator 5 de Diferenciação de Crescimento/genética , Fator 5 de Diferenciação de Crescimento/metabolismo , Humanos , Interleucina-1beta/farmacologia , MicroRNAs/metabolismo , NF-kappa B/metabolismo , Osteoartrite/patologia , Piperidinas/química , Pirimidinas/química , Ratos Wistar , Fatores de Transcrição SOXD/genética , Fatores de Transcrição SOXD/metabolismo , Transdução de Sinais/efeitos dos fármacos , Membrana Sinovial/patologia , Tiazóis/química
11.
Pharmaceuticals (Basel) ; 14(9)2021 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-34577576

RESUMO

Glioblastoma (GBM) is the most common primary malignant brain tumor in adults, with a median duration of survival of approximately 14 months after diagnosis. High resistance to chemotherapy remains a major problem. Previously, BTK has been shown to be involved in the intracellular signal transduction including Akt/mTOR signaling and be critical for tumorigenesis. Thus, we aim to evaluate the effect of BTK and mTOR inhibition in GBM. We evaluated the viability of GBM cell lines after treatment with acalabrutinib and/or rapamycin through a SRB staining assay. We then evaluated the effect of both drugs on GBM stem cell-like phenotypes through various in vitro assay. Furthermore, we incubated HUVEC cells with tumorsphere conditioned media and observed their angiogenesis potential, with or without treatment. Finally, we conducted an in vivo study to confirm our in vitro findings and analyzed the effect of this combination on xenograft mice models. Drug combination assay demonstrated a synergistic relationship between acalabrutinib and rapamycin. CSCs phenotypes, including tumorsphere and colony formation with the associated expression of markers of pluripotency are inhibited by either acalabrutinib or rapamycin singly and these effects are enhanced upon combining acalabrutinib and rapamycin. We showed that the angiogenesis capabilities of HUVEC cells are significantly reduced after treatment with acalabrutinib and/or rapamycin. Xenograft tumors treated with both drugs showed significant volume reduction with minimal toxicity. Samples taken from the combined treatment group demonstrated an increased Desmin/CD31 and col IV/vessel ratio, suggesting an increased rate of vascular normalization. Our results demonstrate that BTK-mTOR inhibition disrupts the population of GBM-CSCs and contributes to normalizing GBM vascularization and thus, may serve as a basis for developing therapeutic strategies for chemoresistant/radioresistant GBM.

12.
Cell Oncol (Dordr) ; 43(6): 1067-1084, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32705581

RESUMO

PURPOSE: Neuroblastoma, a common childhood tumor, remains one of the most elusive diseases to treat. To date, high-risk neuroblastoma is associated with low survival rates. To address this, novel and more effective therapeutic strategies must continue to be explored. METHODS: We employed a bioinformatics approach corroborated with in vitro and in vivo data. Samples from neuroblastoma patients were retrieved and immuno-stained for Bruton's tyrosine kinase (BTK). To evaluate its effect on cellular functions, BTK expression in SK-N-BE(2) and SH-SY5Y neuroblastoma cells was downregulated using gene silencing or inhibition with ibrutinib or acalabrutinib. Xenograft mouse models were used to investigate the in vivo role of BTK in neuroblastoma tumorigenesis. RESULTS: We found that BTK was highly expressed in primary neuroblastoma samples, preferentially in MYCN-amplified neuroblastoma cases, and was associated with a poor prognosis. Immunohistochemical staining of tissues from our neuroblastoma cohort revealed a strong BTK immunoreactivity. We also found that neuroblastoma SK-N-BE(2) and SH-SY5Y cells were sensitive to treatment with ibrutinib and acalabrutinib. Pharmacologic or molecular inhibition of BTK elicited a reduction in the migratory and invasive abilities of neuroblastoma cells, and ibrutinib considerably attenuated the neurosphere-forming ability of neuroblastoma cells. Both inhibitors showed synergism with cisplatin. In vivo assays showed that acalabrutinib effectively inhibited neuroblastoma tumorigenesis. CONCLUSIONS: From our data we conclude that BTK is a therapeutically targetable driver of neuroblastoma.


Assuntos
Tirosina Quinase da Agamaglobulinemia/metabolismo , Células-Tronco Neoplásicas/enzimologia , Células-Tronco Neoplásicas/patologia , Neuroblastoma/enzimologia , Neuroblastoma/patologia , Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Tirosina Quinase da Agamaglobulinemia/genética , Animais , Antineoplásicos/farmacologia , Benzamidas/farmacologia , Carcinogênese/patologia , Caspase 3/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Cisplatino/farmacologia , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Antígeno Ki-67/metabolismo , Masculino , Camundongos Endogâmicos NOD , Camundongos SCID , Invasividade Neoplásica , Metástase Neoplásica , Fenótipo , Prognóstico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pirazinas/farmacologia , Fator de Transcrição STAT3/metabolismo , Esferoides Celulares/metabolismo , Esferoides Celulares/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...